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in its ability to model the material properties of the body
and movement of the boundaries. However, numericalIn this study, a virtual boundary technique is applied to the numer-

ical simulation of stationary and moving cylinders in uniform flow. stiffness of most moving boundary problems restricts the
This approach readily allows the imposition of a no-slip boundary explicit definition of the forcing term in Peskin’s method
within the flow field by a feedback forcing term added to the momen- to small time steps (Tu and Peskin [32]). This method has
tum equations. In the present work, this technique is used with a

been expanded and implemented in a number of otherhigh-order finite difference method, effectively eliminating spurious
problems modeling suspended particulates (Fogelson andoscillations caused by the feedback forcing when used with spec-

trally discretized flow solvers. Very good agreement is found be- Peskin [12]) and the inner ear (Beyer [3]).
tween the present calculations and previous computational and In a related, yet independent, study, Goldstein et al. [15,
experimental results for steady and time-dependent flow at low 16] developed a virtual boundary method based on the
Reynolds numbers. Q 1996 Academic Press, Inc.

initial work of Sirovich [28, 29] which employs a forcing
term governed by a feedback loop. Using a spectral
method, they applied this procedure to investigate the ef-INTRODUCTION
fects of riblets on turbulent channel flow and to flow be-
tween concentric cylinders. They noted that the forcingThe fundamental fluid dynamics problem of a circular
function generated constant low amplitude, high frequencycylinder in uniform flow has been examined extensively
oscillations which they were able to control by numericalin both computational and experimental studies and is
low-pass filters and/or the introduction of particular flowconsidered a stringent test for flow solvers. The difficulty
fields inside of the body. Their simulations were not notice-which accompanies the computational approach to this
ably affected by these spurious signals, but such numericalproblem by finite differences or spectral methods lies in
oscillations may become of concern when one calculatesthe representation of the cylinder geometry to allow for
the evolution of a forced disturbance wave as in the simula-an accurate application of these numerical integration
tion of flow instability and transition.methods. The use of coordinate transformations and map-

In the present study, we use the method developed byping techniques is possible but requires a highly accurate
Goldstein et al. [16] to simulate stationary, rotating, andway of calculating the transformation Jacobians. Finite ele-
oscillating cylinders in uniform flow at low Reynolds num-ment methods (Gresho et al.[17]; Engelman and Jaminia
bers (Re # 400) allowing the assessment of the virtual[11]; Karniadakis and Triantafyllou [21]) and conformal
boundary technique to model a body in an unsteady flowtransformations (Jordan and Fromm [20]; Braza et al. [4];
field. In the present solution procedure, high-order finiteBadr and Dennis [1]) have been successfully used for this
differences are implemented in order to suppress the nu-problem. As an alternative to the use of generalized coordi-
merical oscillations caused by the forcing function ob-nates and coordinate transformations for finite difference
served in the Chebyshev spectral method of Goldstein etand spectral methods, Peskin [23] developed a method
al. [16].which represents a body within a flow field via a forcing

term added to the governing equations. When applied at
certain points in the flow, this forcing term simulates the COMPUTATIONAL METHOD
effect of the body on the flow, allowing for the modeling
of a boundary of any shape within a Cartesian computa- The numerical model integrates the two-dimensional,

time-dependent, incompressible, Navier-Stokes, and con-tional box without the necessity of mapping. Peskin [23,
24] successfully implemented this method (immersed tinuity equations nondimensionalized by the diameter of

the cylinder, D, and the free-stream velocity, Uy , on aboundary technique) to model moving boundaries in heart
valve simulations. The main advantage of the scheme lies staggered mesh by a time-splitting method. The normal
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VIRTUAL BOUNDARY METHOD 451

FIG. 1. Time distribution of the l2-norm error in the no-slip condition imposed by the virtual boundary method defining a cylinder in uniform
flow at Re 5 25. Comparison between solutions with varying a/b: (a) over total run time; (b) closeup of first 1000 time steps; and (c) closeup of
last 1000 time steps. a 5 2400000, b 5 2600, ———; a 5 24000, b 5 260, –––; a 5 2400, b 5 26, –---–---.

diffusion terms are advanced implicitly by the Crank– boundary, uniform flow conditions are assumed, i.e., u 5
1 and v 5 0. At the outflow, boundary conditions areNicolson scheme and either the explicit third-order com-

pact Runge–Kutta or Adams–Bashforth methods are prescribed to ensure that wave-like disturbances (gener-
ated by vortex shedding) in the high Reynolds numberapplied to the remaining terms (Streett and Hussaini

[30]). The equations are discretized spatially in the normal cases leave the computational domain without reflection.
This was accomplished by appending a ‘‘buffer domain’’( y) and streamwise (x) directions by fourth-order central

finite differences. The pressure Poisson equation is evalu- to the physical domain (the length of the buffer domain
was about 20–30% of the physical domain) in which theated by the tensor product method (Huser and Bir-

ingen [19]). governing equations were modified by reducing the stream-
wise viscous terms and the right-hand side of the pressureAt the upper and lower boundaries, we impose shear

free conditions, i.e., u/y 5 0 and v 5 0 and at the inflow Poisson equation to zero at the outflow boundary using a
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FIG. 2. Re 5 550, t 5 3: streamwise velocity. (a) Chebyshev; (b) finite differences.

smooth coefficient function. Previous numerical experi- body moves, i.e., v ? 0, then the position of the boundary
ments have included rigorous testing of this technique, points at each time step is computed by integration of
verifying its suitability for use in both high and low ampli- v 5 dxs/dt. The negative constants a and b are determined
tude wave propagation problems (Streett and Macaraeg by observing the response of U once F is applied; a pro-
[31]; Danabasoglu [9]; Danabasoglu et al. [10]; Saiki et duces the natural oscillation frequency of the response,
al. [26]). while b dampens the oscillation of the response. For un-

In implementing the method of Goldstein et al. [16] to steady flows, a must produce a response with a natural
the present calculations of flow over a cylinder, the no- frequency greater than the highest frequencies present in
slip boundary of the cylinder surface was represented by the flow so that F can respond correctly to the changing
a feedback forcing function added to the momentum equa- flow field. The oscillatory nature of the boundary does not
tions. This feedback function effectively brings the fluid affect the overall steady state of the flow field. However,
velocity to zero at the desired points in the flow which for each combination of a and b a different forcing function
define the no-slip boundary and can be expressed as is added to the right-hand side of the momentum equations,

therefore a set of similar but slightly different flow fields
are obtained for each of the solutions. For example, com-F(xs , t) 5 a Et

0
(U(xs , t) 2 v(xs , t)) dt

(1) parison of the cylinder cases presented below revealed
variations of 1–2% in the geometrical parameters of the1 b(U(xs , t) 2 v(xs , t)).
wake.

To examine the response of the virtual boundary toHere, F is the external force imposed at the discrete surface
different a/b combinations, a stationary cylinder at Re 5points defined by xs , and U is the fluid velocity at these
25 was modeled and the l2-norm error of the velocities atsurface points. The velocity of the body itself is controlled

by specifying v 5 (ub , vb) at the boundary points. If the the boundary points with respect to the no-slip boundary
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FIG. 3. Re 5 550: normal profiles of streamwise velocity in the vicinity of the cylinder. (a) x 5 2.23750; (b) x 5 2.2875; (c) x 5 2.3125;
(d) x 5 2.3650. Chebyshev, ———; finite differences –––.

condition was tracked in time. The l2-norm in the stream- The time step restricting this method is based upon the
values of a and b and the explicit time integration imple-wise velocity is defined as
mented in the flow solver. For the Adams–Bashforth
method, Goldstein et al. [16] determined the following

l2-norm 5 ! 1
nb

Onb

i51
(ub)2

i , (2) expression for the time step

where nb is the number of virtual boundary points. The Dt ,
2b 2 Ï(b2 2 2ak)

a
, (3)

results of this analysis are presented in Fig. 1. With the
application of the higher values of these parameters, the
no-slip boundary condition is quickly attained. At the end where k is a problem dependent constant of order one. A

similar restriction was observed in the current study whenof the time period considered, the l2-norm corresponding
to the lower a/b values is two orders of magnitude higher the Runge–Kutta method was used.

In order to represent the body boundary in the flowthan the other two cases; however, it continues to decay.
These test cases suggest that higher values of the coeffi- field, Goldstein et al. [16] defined the boundary on

points which coincided with the computational grid nodes,cients allow the method to respond faster to any unsteadi-
ness in the flow field and act more efficiently in reinforcing whereas Peskin [23, 24] and Goldstein et al. [15] defined

the body boundary in a manner independent of thethe no-slip conditions. These computations were con-
ducted using nb 5 1441 boundary points; further increases computational grid. Peskin [23] utilized a first-order co-

sine function to interpolate and extrapolate informationor decreases in nb with the same values of a and b yielded
similar results. between the immersed boundary and the grid. More
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where

Di, j(xs) 5 d(xs 2 xi)d( ys 2 yj). (5)

In Eq. (5),

d(xs 2 xi) 5
(xs 2 xi11)
(xi 2 xi11)

if xi , xs (6a)

d(xs 2 xi) 5
(xs 2 xi21)
(xi 2 xi21)

if xi . xs (6b)

and

d(xs 2 xi) 5 1 if xi 5 xs . (6c)

The effect of the virtual boundary force is extrapolated
back to the grid points by area-weighted averages,

Fi, j 5
1

Nb
ONb

n51
Di, j(xs)Fn(xs), (7)

where Nb is the number of virtual boundary points which
affect the (i, j)th grid point. This method of spreading the
boundary forces results in an effective boundary thickness
on the order of one grid cell, i.e., O(Dx, dy). The above
interpolation/extrapolation scheme is first-order accurate,
similar to the delta function representation of Peskin [23].
The low order accuracy of this operation influences mainly
the flow field in the immediate vicinity of the cylinder;
however, large scale features are successfully captured by
this method.

Both Peskin [23, 24] and Goldstein et al. [15, 16] imposed
the forcing term only at points which defined the boundary,FIG. 4. Superposition of the virtual boundary points on the computa-
thus allowing fluid motion inside the body. For Peskin’stional grid: (a) full cylinder body; (b) upper left portion of the cylinder.
[23, 24] work this behavior is desirable since his calculations
concern blood flow inside of the heart and the external
flow field is ignored. Goldstein et al. [15, 16] investigatedrecently, Beyer [3] developed a second-order accurate
the effect of solid bodies placed within a flow field whichrepresentation of the immersed boundary in applications
physically do not permit flow inside the boundary. Conse-of Peskin’s method. Goldstein et al. [15] implemented
quently, the flow fields which were numerically allowed tohighly accurate spectral interpolation of the velocities
develop in such boundaries were unphysical; however, thefrom the grid points to the virtual boundary points and
internal flow field was used as a smoothing device to attenu-applied linear interpolation to distribute the effect of
ate spatial oscillations generated by the method (Goldsteinthe forcing term to the grid nodes.
et al. [15, 16]). In the present computations, some of the testIn the current study, the fluid velocities are interpolated
cases (in particular, the Re 5 550 case presented below)to a virtual boundary point, (xs , ys), from the four sur-
converged to an incorrect solution with the forcing termrounding grid points denoted by the indices (i, j),
imposed only on the boundary. This behavior was reme-(i 1 1, j), (i, j 1 1), and (i 1 1, j 1 1), using bilinear inter-
died by imposing the forcing function inside the boundarypolation,
of the body, as well as on the boundary. This suggests that
in implementing the virtual boundary technique in solidU(xs) 5 Oi11, j11

i, j
Di, j(xs)Ui, j , (4)

body problems, where the solution is unknown, the forcing
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FIG. 5. Re 5 25: (a) spanwise vorticity, dotted and solid lines denote negative and positive levels, respectively; (b) streamfunction.

term should be applied at the boundary and interior points the attenuation of the oscillations with the application of
finite differences. Comparison of the streamwise profilesof the body in order to converge to a correct solution.

In an earlier work by the authors [27], the virtual bound- in the normal direction (Fig. 3) provide clear evidence that
the oscillations are strongly damped.ary technique was used with a different flow solver imple-

menting Chebyshev polynomials in the wall-normal dir-
RESULTSection. Due to the global nature of the Chebyshev

polynomials, nongrowing, spatial oscillations in the normal
Stationary Cylinder in Uniform Flow

and streamwise directions developed in the flow field when
the feedback forcing function was applied. The virtual The cases investigating uniform flow over a stationary

cylinder examined Reynolds numbers (Re 5 UyD/n) rang-boundary acts as a discontinuity in the spectral representa-
tion of the flow field, thus causing the oscillations to arise ing from Re 5 25 to Re 5 400. The mesh resolution varied

from 267 3 147 to 436 3 147 for computational domains(Gibb’s phenomenon). These oscillations were similar to
those also observed by Goldstein et al. [16] and did not ranging from 20 3 10 to 34 3 10. As the Reynolds number

increased, the length of the computational domain wasappear to affect the flow field downstream of the body. In
the present work, the application of a local discretization increased in order to accommodate the stronger vortices

which were shed from the cylinder. These adjustments arescheme, i.e., finite differences, in the normal direction dras-
tically reduced the amplitude of these spatial oscillations. reflected in the varying grid and domain sizes cited above.

Mesh stretching was employed in both directions with gridThe effect of these different discretization methods (i.e.,
the Chebyshev and finite difference methods) is illustrated clustering near the body: the minimum grid spacing in the

vicinity of the cylinder for all cases was Dxmin 5 Dymin 5in results obtained from computations of startup flow over
a cylinder at Re 5 550 (Figs. 2 and 3). Contours of stream- 0.0375. The feedback forcing coefficients were set to a 5

2400000 and b 5 2600, and the number of points definingwise velocity reveal the spatial oscillations which arise due
to the Chebyshev discretization (Fig. 2a), and Fig. 2b shows the cylinder was 1441. The distribution of points defining
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FIG. 6. Re 5 30 : (a) spanwise vorticity, dotted and solid lines denote negative and positive levels, respectively; (b) streamfunction.

TABLE I

Comparison of the Wake Properties behind a Stationary Cylinder with Experiments and Previous Computational Results
for Re 5 25 and Re 5 30; Steady Flow Solutions

Re 5 25 Re 5 30

Coutanceau Coutanceau
Properties of the wake behind a Present Gresho et al. & Bouard Clift et al. Present & Bouard Clift et al.

stationary cylinder results [17]a [6]b [5]b results [6]b [5]b

Length of the separation bubble (L) 1.41 1.15 1.22 — 1.7 1.53 —
x-coordinate of the center of the

vortex cores (a) 0.53 0.38 0.44 — 0.62 0.55 —
y-distance between the vortex cores

(b) 0.5 0.47 0.51 — 0.5625 0.54 —
Minimum streamwise velocity on

the axis of symmetry (umax) 20.064 20.057 20.057 — 20.08 20.0743 —
x-coordinate of minimum stream-

wise velocity on the axis of sym-
metry (d) 0.59 0.49 0.5 — 0.72 0.64 —

Separation angle (u) 458 458 488 — 488 50.18 —
Drag coefficient (Cd) 1.54 2.26 — 1.84 1.38 — 1.69

a Computational study.
b Experiment.
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FIG. 7. Re 5 50 : steady state solution. (a) spanwise vorticity, dotted and solid lines denote negative and positive levels, respectively; (b) stream-
function.

the virtual boundary superimposed onto the computational At low Reynolds numbers, (4.5 # Re # 35), experiments
reveal an attached, steady, symmetric, recirculating bubblegrid is presented in Fig. 4. In this particular case, we chose

to impose the virtual boundary only on points defining the which develops downstream of the cylinder (Coutanceau
and Defaye [7]). In the present simulations this behaviorboundary of the cylinder; similar results were obtained

when points were imposed in the interior. The velocity is clearly observed in the stream-function and spanwise
vorticity contours for Re 5 25 and Re 5 30, respectivelycomponents of the boundary points, v, were set to zero.

FIG. 8. Re 5 50 : unsteady solution. (a) spanwise voriticity, dotted and solid lines denote negative and positive levels, respectively; (b) stream-
function.
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TABLE II

Comparison of Quantitative Data with Results from Experiments and Previous Computational Studies; Unsteady Flow Solutions

Drag coefficient: Cd
a Strouhal number: St Wavelength: l Vortex speed: St l

Gresho Gresho Berger Gresho Gresho
Present et al. Clift Present et al. Roshko & Wille Present et al. Present et al.

Re results [17]b et al. [5]c results [17]b [26]c [2]c results [17]b results [17]b

50d 1.38 1.81 1.41 0.139 0.14 0.122 0.12–0.13 6.9 6.5 0.96 0.93
65 1.33 — 1.33 0.152 — 0.143 — 6.3 — 0.96 —

100 1.26 1.76 1.24 0.171 0.18 0.167 0.16–0.17 5.5 5.2 0.94 0.93
200 1.18 1.76 1.16 0.197 0.21 — 0.18–0.19 4.7 4.4 0.93 0.92
400 1.18 1.78 1.12 0.22 0.22 0.205 0.2–0.21 4.2 4.4 0.92 0.96

a Drag coefficient is averaged in the unsteady cases.
b Computational study.
c Experiment.
d Unsteady solution (Fig. 7).

(Figs. 5 and 6). The physical parameters of the separation tions, the flow field was numerically perturbed. Similarly,
in the present study a perturbation was needed in orderbubble are compared with previous experimental and com-

putational studies in Table I and show good agreement to obtain vortex shedding at Re 5 50; however, the higher
Reynolds number cases did not require any external per-for both Reynolds numbers.

When the Reynolds number is increased to values in turbations. Consequently, Re 5 50 is close to a critical
Reynolds number above which the solution becomes un-the 35 # Re # 60 range, experiments observe asymmetry

of the separation bubble and ‘‘wavy’’ behavior of the tail steady. It is possible that the steady state solution obtained
for Re 5 50 may eventually exhibit unsteadiness due toof the wake. In the current computations it was found that

for Reynolds numbers in this range (in particular, Re 5 the buildup of truncation and machine errors in the solu-
tion, but the computer time needed to arrive at this point50) the type of wake behavior depends on whether the

initial conditions are perturbed. For example, if no forced would be considerable.
According to experimental results, increasing the Reyn-perturbations are imposed a steady separation bubble de-

velops downstream of the cylinder (Fig. 7). The length of olds number beyond Re 5 60 leads to the development
of a Kármán vortex street forced by vortices which arethe separation bubble in this case is L 5 3 in agreement

with the steady state computation of Fornberg [13] at shed alternately with a distinct frequency from the top and
bottom of the cylinder (Coutanceau and Defaye [7]). InRe 5 50. If the solution shown in Fig. 7 is disturbed by

introducing a small perturbation in the flow field, vortex the present study, the formation of the vortex street is
depicted clearly in spanwise vorticity contours for Re 5shedding is instigated. This behavior is demonstrated in

Fig. 8, where the cylinder was moved vertically 0.001 nondi- 65, 100, 200, and 400 (Fig. 9). In Fig. 10, vertical velocity
contours for Re 5 400 are plotted, indicating a very smoothmensional units away from its original position and then

moved back, perturbing the flow field and generating a solution that is free of any detectable residual oscillations.
As the Reynolds number increases, the frequency of theKármán vortex street. At Re 5 50, Gresho et al. [17] also

observed vortex shedding from the cylinder with no shedding increases (Table II) and the vortices become
more concentrated. The patterns obtained for Re 5 65attached separation bubble, and the wake characteristics

measured in the unsteady solution of the current study and Re 5 100 show remarkable similarity to the flow visual-
izations of Freymuth et al. [14]. The time spectra and signa-show good agreement compared with Gresho et al.’s [17]

results (Table II). In the computational studies of Jordan ture of the streamwise velocity at a point downstream of
the cylinder reveals the presence of a spike at the vortexand Fromm [20] and Braza et al. [4], no vortex shedding

or asymmetry of the separation bubble was observed for street Strouhal number (St 5 Uy f/D : f 5 dimensional
frequency); higher harmonics of the Strouhal number areReynolds numbers up to 1000. Braza et al. [4] explained

this behavior by stating that the computational scheme also present (Fig. 11). Experiments predict that the onset
of three-dimensionality and turbulence will occur at Reyn-was too ‘‘clean,’’ i.e., no external perturbations existed

(as would appear in an experiment), therefore there was olds numbers below Re 5 200 (Coutanceau and Defaye
[7]). Because of the two-dimensional nature of the currentnothing to trigger any asymmetry or unsteadiness of the

flow field. To induce the vortex shedding in their simula- computations, turbulence and the effects of three-dimen-
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FIG. 9. Spanwise vorticity; dotted and solid lines denote negative and positive levels, respectively. (a) Re 5 65; (b) Re 5 100; (c) Re 5 200;
(d) Re 5 400.

sionality cannot be obtained, however, the vortices shed Tables II and III summarize the drag coefficient (Cd),
Strouhal number, the wave-length of the Kármán vortexfrom the cylinder at Re 5 200 and 400 exhibit some irregu-

larities associated with higher harmonics which subside as street (l), and the vortex speed (St l) observed for the
unsteady solutions and they provide comparisons with pre-the vortices are convected downstream, forming a laminar

Kármán vortex street (Figs. 9c–d). vious computational and experimental results. The Strou-
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FIG. 10. Re 5 400 : normal velocity, dotted and solid lines denote negative and positive levels, respectively.

FIG. 11. Spectra and time signatures of streamwise velocity measured at (xd , yd ) 5 0.9445, 20.325); xd is the streamwise distance downstream
from the cylinder and yd is the normal distance from the symmetry axis of the cylinder. (a) Re 5 50 (unsteady solution, Fig. 7); (b) Re 5 65; (c)
Re 5 100; (d) Re 5 200; (e) Re 5 400.
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TABLE III the inflow boundary was too close to the cylinder or if the
domain was not wide enough, a higher Strouhal numberComparison of Quantitative Data with Previous
was obtained. The distance between the inflow boundaryComputational Results for Re 5 100; Unsteady Flow Solutions
and the cylinder in the current study (Li 5 4) is comparable

Gresho Engelman Braza Joran & to the domain length used by Gresho et al. [17] and Engel-
Present et al. & Jaminia et al. Fromm Karniadakis man and Jaminia [11], but shorter than those used by

Re 5 100 results [17] [11] [4] [20] et al. [21] Karniadakis and Triantafyllou [21], Braza et al. [4], and
Jordan and Fromm [20]. Accordingly, as shown in Table

Cd 1.26 1.76 1.411 1.28 1.28 — III, the Strouhal number obtained in the current computa-St 0.171 0.18 0.173 0.16 0.16 0.168
tions falls within the range of Strouhal numbers determinedl 5.5 5.2 5.32 — — —
by the previous computational studies. We performed sev-St l 0.94 0.93 0.915 — — —
eral test calculations with an expanded computational do-
main which revealed a slight drop in Strouhal number
(from 0.171 to 0.168 for Re 5 100) confirming that the

hal numbers obtained from the present results are slightly proximity of the boundaries affects the vortex-shedding
higher than the experimental results; however, they corre- frequency.
spond better than the values obtained by the majority In the present study the drag coefficient was calculated

in a manner similar to Goldstein et al. [16]; the drag wasof the other computational studies. The higher Strouhal
number can be attributed to the size of the computational found by considering the loss of fluid momentum in the

domain, i.e.,domain. Karniadakis and Triantafyllou [21] found that if

FIG. 12. Re 5 200 : rotating cylinder. Time evolution of streamfunction contours. (a) t 5 1; (b) t 5 1.5; (c) t 5 2; (d) t 5 3; (e) t 5 4; (f) t 5

5; (g) t 5 5.5; (h) t 5 6.
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FIG. 12—Continued

defined by the boundary points of the cylinder as u 5
Cd 5 2 Ey

2y

U
Ui

S1 2
U
Ui
D dy. (8) tan21( yb/xb).

The characteristics of the startup flow at this Reynolds
number and rotation rate consist of a primary eddy evolvingDue to the influence of the boundary conditions on the
at the top of the cylinder and a developing second eddy be-

computation, Ui was defined as the maximum mean veloc- low the x-axis of symmetry (Figs. 12a–d). The second eddy
ity measured at a distance D/2 upstream of the cylinder. moves upward (Figs. 12c–d) inducing two secondary vorti-
As Tables II and III reveal, good agreement is found for ces which merge to form a single vortex at time, t 5 6 (Figs.
values of Cd , in comparison with experiments and previous 12e–h). The streamfunction contours obtained by the cur-
computational work. rent study are in remarkable agreement with experimental

observations (Coutanceau and Ménard [8]) and previous
Rotating Cylinder in Uniform Flow computational results (Badr and Dennis [1]). Figure 13

demonstrates excellent comparison between profiles ofThe startup flow over a cylinder rotating counterclock-
streamwise and normal velocity along the x-axis behind thewise in uniform flow was computed for Re 5 200. The
cylinder obtained from the current computation and experi-rotation rate of the cylinder was g 5 1, resulting in a
mental measurements (Coutanceau and Ménard [8]).tangential velocity of one half the freestream velocity

(vt 5 0.5). The motion of the cylinder was introduced
Oscillating Cylinder in Uniform Flow

by setting the components of v in Eq. (6) to the proper
streamwise and normal velocities arising from the rotation This computation was performed at Re 5 200 with the

cylinder oscillating parallel to the free-stream velocity atof the cylinder, i.e., v 5 (2vt sin u, vt cos u), where u is
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FIG. 13. Re 5 200 : rotating cylinder. Time evolution of the velocity profiles along the x-axis of symmetry. (a) streamwise velocity; (b) normal
velocity. Current computational results: ----------. t 5 1; –––, t 5 1.5; –-–-–-, t 5 2; –---–---, t 5 3; ——, t 5 4. Experimental results [8]: 1, t 5 1;
*, t 5 1.5; e, t 5 2; n, t 5 3; h, t 5 4.

a frequency, fc 5 1.88 St, i.e., 1.88 times the Strouhal fre- the two clockwise vortices moving downstream alongside
the counterclockwise eddy. These results are in excellentquency for the stationary cylinder. The amplitude of the

oscillation resulted in a streamwise displacement of the agreement with experimental observations (Griffin and
Ramberg [18]; Ongoren and Rockwell [22]).cylinder of 60.24, and the cylinder motion was prescribed

by setting the horizontal velocities on the boundary points
to ub 5 Ac cos(2ffct). The computations started with the CONCLUSION
cylinder stationary and oscillations were imposed once the
solution reached a quasi-steady state. In this study, we applied a virtual boundary method to

several steady/unsteady flow problems. The method mod-For the parameters considered in the current study,
the vortex shedding pattern of the stationary case at els a no-slip boundary by an external forcing function

added to the momentum equations. The computationalRe 5 200 (Fig. 9c) is modified by the oscillation of the
cylinder. This clearly depicted in the time evolution of results for both stationary and moving cylinders in uniform

flow compare favorably with both experimental and previ-spanwise vorticity contours over two oscillation periods
of the cylinder (Fig. 14). During this time period an ous computational studies and lend further evidence to the

applicability of the virtual boundary technique for steadyantisymmetrical mode A 2 III (Ongoren and Rockwell
[22]) appears consisting of two clockwise vortices shed and unsteady flow problems. The oscillations caused by

the virtual boundary method when used with a spectralfrom the top of the cylinder and the evolution of a
single counterclockwise eddy from the bottom. These discretization method were attenuated by the application

of high-order finite differences.vortices then form a vortex street with the weaker of
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FIG. 14. Re 5 200 : oscillating cylinder. Time evolution of spanwise vorticity contours; dotted and solid lines denote negative and positive
contours, respectively. (a) t 5 T/4; (b) t 5 T/2; (c) t 5 3T/4; (d) t 5 T; (e) t 5 5T/4; (f) t 5 3T/2; (g) t 5 7T/4; (h) t 5 2T (T is the oscillation
period of the cylinder).
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